Sensoren : UV-Licht ständig im Blick

Beim Wort »UV-Strahlung« schrillen bei den meisten Menschen die Alarmglocken – der Begriff wird mit Sonnenbrand und Hautkrebsrisiko gleichgesetzt. Doch es gibt auch einen positiven Effekt: Der menschliche Körper braucht das UV-Licht, um Vitamin D zu bilden. Auch in der Industrie nutzt man das UV-Licht, beispielsweise um Lacke auf Lebensmittelverpackungen oder Klebstoffe auszuhärten, aber auch um Wasser zu desinfi zieren. Trifft allerdings zu viel Strahlung auf die Oberfl ächen, werden diese geschädigt, Energie wird unnötig verbraucht und viel Ozon erzeugt. UV-Sensoren helfen daher, die Lichtintensität im optimalen Bereich zu halten.
Bisher ungenaue Sensoren. Üblicherweise bestehen die Sensoren aus Silizium oder Siliziumkarbid. Das Problem: Silizium-Sensoren können nur dann sinnvolle Ergebnisse liefern, wenn sichtbares Licht aus der gemessenen Strahlung herausgefi ltert wird. Diese Filter wiederum sind jedoch teuer und nicht sonderlich UV-resistent – um sie nicht allzu sehr zu belasten, sind lediglich Momentaufnahmen möglich. Sensoren aus Siliziumkarbid dagegen halten zwar die UV-Strahlung gut aus, decken allerdings nur einen kleinen Spektralbereich ab. In den meisten industriellen Härtungsprozessen kommt es jedoch gerade auf den langwelligen Bereich an, in dem diese Sensoren ungenau arbeiten.Forscher des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF in Freiburg haben nun einen neuen UV-Sensor entwickelt, gemeinsam mit ihren Kollegen der Fraunhofer-Institute für Fertigungstechnik und Angewandte Materialforschung IFAM, für Optronik, Systemtechnik und Bildauswertung IOSB, für Siliziumtechnologie ISIT und für Physikalische Messtechnik IPM. »Unser Sensor basiert auf Aluminiumgalliumnitrid und übersteht dauerhafte UV-Strahlung unbeschadet«, sagt Dr. Susanne Kopta, Projektleiterin am IAF. »Somit ermöglicht er nicht nur Momentaufnahmen, sondern ein permanentes Inline-Monitoring.« Basis für die Sensoren bildet ein Saphir-Wafer. Auf diesen bringen die Forscher epitaktisch die aktiven Schichten auf, das bedeutet die Schichten haben also eine Kristallstruktur.
Sensor für hohe UV-Intensitäten.Die Stärke des neuartigen Sensors liegt vor allem in Anwendungen, bei denen sehr hohe UV-Intensitäten auftreten – und solchen, bei denen ein ganz spezieller Spektralbereich beobachtet werden soll. Denn die Detektoren lassen sich auf zwei verschiedene Weisen einstellen: Entweder legen die Forscher eine Schwell-Wellenlänge fest. Der Sensor detektiert dann sämtliche UV-Strahlen, deren Wellenlänge unter dieser Schwell-Wellenlänge liegt. Oder man legt zwei Grenzwellenlängen fest und »schneidet« somit einzelne Bereiche des Spektrums heraus. »Der kleinste abbildbare Bereich umfasst dabei 20 Nanometer Wellenlängendifferenz«, konkretisiert Kopta. So ist es beispielsweise denkbar, einen Sensor für UV-A, einen weiteren für UV-B und einen für UV-CStrahlung herzustellen. Doch wie stellen die Forscher die Wellenlängen ein, die der Sensor wahrnimmt? »Das geschieht über das Verhältnis von Gallium zu Aluminium in einer der Aluminiumgalliumnitrid-Schichten«, sagt Kopta.
Das Herzstück des Sensors. Dieses Verhältnis festzulegen, ist eine der Herausforderungen, denen sich die Forscher momentan stellen. Weitere Herausforderungen liegen darin, den Aluminiumgalliumnitrid-Kristall – das Herzstück des Sensors – so zu wachsen, dass er frei von strukturellen Defekten und Verunreinigungen ist. Denn das hätte zur Folge, dass einzelne Stellen andere Wellenlängenbereiche detektieren würden als der Rest des Sensors, das Ergebnis wäre verfälscht. »Den großen Parameterraum bei der Herstellung der Kristallschichten zu beherrschen, ist der kniffelige Teil – auf jeden Fall braucht man viel Erfahrung«, erläutert Kopta.Einzelne Demonstratoren sind bereits fertig. In weiteren Schritten wollen die Forscher nun das Kristallwachstum optimieren und die Grenzen der Wellenlängenbereiche schärfer ziehen. Auch die Lebensdauer der Bauelemente kommt auf den Prüfstand: Die Ergebnisse sind bereits vielversprechend. »Erste Messungen haben gezeigt, dass die Sensoren 1000 Stunden bei hoher Leistung unbeschadet überstehen«, bestätigt Kopta.