Entgeltliche Einschaltung

3D-Druck : TU Graz: Direkte Fertigung von Nanostrukturen mit 3D-Druck

TU Graz Prof. Harald Plank
© Lunghammer - TU Graz

Im Nanometerbereich sind komplexe, freistehende 3D-Architekturen durch die erforderliche Präzision sehr schwer herstellbar. Im Christian Doppler Labor für direkte Fabrikation von 3D-Nanosonden widmen sich Wissenschafter der TU Graz deshalb den Grundlagen des 3D-Nanoprintings und entwickeln die Technologie weiter. Die Gruppe nutzt die fokussierte Elektronenstrahlabscheidung (Focused Electron Beam Induced Deposition – FEBID), die bereits bei der Fertigung komplexer, jedoch oftmals flacher Nanostrukturen erfolgreich eingesetzt wird.

Mehr Effizienz und mehr Möglichkeiten

Das Forschungsteam hat die Technologie im CD-Labor nun derart weiterentwickelt, dass selbst komplexe dreidimensionale Nanostrukturen kontrolliert und vor allem voraussagbar hergestellt werden können. Neben dem Fertigen neuer Strukturen ermöglicht das Verfahren auch das Modifizieren von bereits fertigen Mikro- und Nanobauteilen. Die einzelnen Lagen bleiben auf nahezu jedem Material und jeder Oberflächenbeschaffenheit haften. Die zeitsparende Methode erfordert keine Vor- oder Nachbehandlung. Zum anderen ermöglicht es auch die Fabrikation auf unebenen bzw. rauen Oberflächen. Die Technologie soll künftig Herausforderungen meister, die mit alternativen Nanofabrikationsmethoden wie der Elektronenstrahl-Lithographie nicht möglich sind.

So funktioniert die neue 3D-Nanoprinting Technologie

Eingesetzt wird das neue Verfahren in Kooperation mit den Industriepartnern GETec Microscopy (Wien) und der Anton Paar GmbH (Graz) im Bereich der Rasterkraftmikroskopie für die Fertigung von Messsonden, die Spitzenradien von unter zehn Nanometer aufweisen können. „Der Druckvorgang geschieht in der Vakuumkammer von Elektronenmikroskopen. Die funktionellen Gase werden mit einer feinen Nadel in der Nähe der Probe eingebracht. Die gasförmigen Moleküle adsorbieren dann auf der Oberfläche und werden vom fokussierten Elektronenstrahl chemisch aufgespalten und immobilisiert – sie bleiben also durch die Interaktion mit dem Elektronenstrahl an Ort und Stelle haften“, erklärt Plank. „Man kann sich das 3D-Nanoprinting wie einen Kugelschreiber vorstellen: Der Elektronenstrahl agiert wie die Mine des Kugelschreibers und das Gas ist die Tinte.“

Erfolgreiche Umsetzung

Während der letzten 20 Monate konnte das CD-Labor bereits den ersten Proof-of-Principle abliefern. Hierfür wurde Febid für die Herstellung von elektrisch leitfähigen Nanosonden verwendet, deren Leistungsfähigkeit deutlich höher ist als jene von alternativen, kommerziell erhältlichen Produkten. „Die Kleinserienproduktion wird in den kommenden Monaten in Wien ihren Betrieb aufnehmen und dem Industriepartner GETec Microscopy neue Möglichkeiten eröffnen“, sind Plank und sein Team zufrieden mit dem Ergebnis.

Internationale Kooperation

Damit das neue Verfahren keine Nischentechnologie bleibt, wollen die Forschenden im CD-Labor als nächsten Schritt eine neue Software für 3D-Nanoprinting entwickeln, mit der auch ohne breite Vorkenntnisse komplexe Nanostrukturen gedruckt werden können. Hierzu haben sich Plank und seine Arbeitsgruppe mit den Oak Ridge National Laboratories (USA) und dem Physikalischen Institut an der Goethe-Universität Frankfurt (GER) zusammengeschlossen, die gemeinsam mit der TU Graz zu den weltweit führenden Forschungseinrichtungen auf diesem Gebiet zählen. Im Fokus dieses Vorhabens ist auch die Erweiterung des Verfahrens auf 3D-Flächen und Multi-Material-Strukturen, um die Funktionalität und damit auch die Relevanz dieser Technologie in Forschung und Entwicklung weiter zu steigern.