Mikroelektronik : Isolatoren für Mikrochips der Zukunft gesucht

© Jean M. Favre, CSCS

Schon seit Jahrzehnten geht der Trend in der Mikroelektronik hin zu immer kleineren und kompakteren Transistoren. 2D-Materialien wie Graphen gelten hier als Hoffnungsträger: Es handelt sich um die dünnsten Materialschichten, die überhaupt möglich sind. Trotzdem können sie elektrischen Strom leiten – herkömmliche Siliziumtechnologie hingegen funktioniert bei dieser geringen Schichtdicke nicht mehr.

Revolution der Halbleiterindustrie: Die Suche nach Isolator-Materialien

Allerdings verwendet man solche Materialien nicht im luftleeren Raum, man muss sie mit passenden Isolatoren kombinieren, um sie einerseits von unerwünschten Umwelteinflüssen abzuschotten und um andererseits den Stromfluss über den sogenannten Feldeffekt zu steuern. Dafür wurde bisher in der Regel hexagonales Bornitrid (hBN) verwendet, da es eine hervorragende Umgebung für 2D Materialien bildet.

Untersuchungen der TU Wien, in Kooperation mit der ETH Zürich, dem russischen Ioffe Institut und Forschern aus Saudi-Arabien und Japan zeigen nun allerdings, dass im Gegensatz zu bisherigen Annahmen dünne hBN Schichten als Isolatoren für künftige, miniaturisierte Feldeffekttransistoren nicht geeignet sind – es kommt zu exorbitanten Leckströmen. Wenn 2D-Materialien also tatsächlich die Halbleiterindustrie revolutionieren sollen, muss man sich auf die Suche nach anderen Isolator-Materialien machen.

Das vermeintlich perfekte Isolatormaterial

„Auf den ersten Blick passt Hexagonales Bornitrid so gut zu Graphen und zweidimensionalen Materialien wie kein anderer Isolator“, sagt Theresia Knobloch vom Institut für Mikroelektronik der TU Wien. „Genau wie die 2D-Halbleiter, die es einschließen soll, besteht auch hBN selbst bloß aus einzelnen atomaren Lagen, die nur schwach aneinander gebunden sind.“ Dadurch können aus hBN auf einfache Weise atomar glatte Oberflächen hergestellt werden, die den Transport von Elektronen durch 2D Materialien nicht stören.

Kleine Leckströme mit großen Auswirkungen

Ein Transistor kann mit einem Wasserhahn verglichen werden – mit dem Unterschied, dass statt einem Wasserstrom elektrischer Strom ein- und ausgeschaltet wird. Wie bei einem Wasserhahn ist es auch bei einem Transistor sehr wichtig, dass aus dem Ventil selbst nichts austritt.

Genau dafür ist beim Transistor der Gate-Isolator zuständig: Er isoliert die steuernde Elektrode, über die der Stromfluss ein- und ausgeschaltet wird, vom Stromkanal selbst, durch den dann der Strom fließt. Ein moderner Mikroprozessor enthält etwa 50 Milliarden Transistoren. Daher kann auch ein geringer Stromverlust an den Gates eine enorme Rolle spielen, weil dadurch der Gesamtenergieverbrauch stark ansteigt.

Das Forschungsteam untersuchte nun die Leckströme, die durch dünne hBN-Schichten fließen. Dabei zeigte sich, dass einige jener Eigenschaften, die hBN zu einem so gut geeigneten Substrat machen, gleichzeitig die Leckströme durch hBN stark erhöhen. Bornitrid hat eine kleine Dielektrizitätskonstante – das heißt, dass das Material nur eine geringe Wechselwirkung mit elektrischen Feldern zeigt. Das führt dazu, dass die in miniaturisierten Transistoren zum Einsatz kommenden hBN Schichten nur ein paar Atomlagen dick sein dürfen, damit das elektrische Feld des Gates den Kanal in ausreichendem Maße steuern kann. Gleichzeitig werden so aber die Leckströme zu groß, da diese bei dünnen Schichten exponentiell ansteigen.

Die Suche nach Isolatoren

“Unsere Ergebnisse zeigen, dass sich hBN nicht als Gate-Isolator für miniaturisierte Transistoren basierend auf 2D Materialien eignet“, sagt Tibor Grasser von der TU Wien. „Diese Erkenntnis ist eine wichtige Orientierungshilfe für zukünftige Studien, aber sie ist erst der Anfang der Suche nach geeigneten Isolatoren für kleinste Transistoren. Derzeit kann kein bekanntes Materialsystem alle Anforderungen erfüllen, aber es ist nur eine Frage der Zeit und der investierten wissenschaftlichen Ressourcen bis ein geeignetes Materialsystem gefunden wird.“ Nun können sich Wissenschaftler auf die Suche nach einer Lösung machen, denn man sieht es am aktuellen Chipmangel: Wir brauchen Computerchips.